335 research outputs found

    Invisible Social Infrastructures to Facilitate Time-pressed Distributed Organizing

    Full text link
    How do complex societal demands and time constraints posed by distributed temporary organizing affect organizational communication? Extending Bowker and Star’s (2002) work on infrastructures, we introduce two context-specific ‘invisible’, social infrastructures: organizational and relational. We empirically assess their role in an international, multi-site ERP-software implementation. We investigated how these infrastructures shaped organizational activities, aligned discourses, created order, and prevented divergent behaviours. We found that mutually interdependent organizational and relational infrastructures strengthened social relationships and saved time by facilitating non-routine collaboration and organizational communication under geographic and temporal constraints. We argue that the conceptualization of (infra)structural and process dynamics will help researchers and practitioners understand and handle organizational communication in distributed temporary organizations

    Micro-crystalline inclusions analysis by PIXE and RBS

    Get PDF
    A characteristic feature of the nuclear microprobe using a 3 MeV proton beam is the long range of particles (around 70 \mu m in light matrices). The PIXE method, with EDS analysis and using the multilayer approach for treating the X-ray spectrum allows the chemistry of an intra-crystalline inclusion to be measured, provided the inclusion roof and thickness at the impact point of the beam (Z and e, respectively) are known (the depth of the inclusion floor is Z + e). The parameter Z of an inclusion in a mineral can be measured with a precision of around 1 \mu m using a motorized microscope. However, this value may significantly depart from Z if the analyzed inclusion has a complex shape. The parameter e can hardly be measured optically. By using combined RBS and PIXE measurements, it is possible to obtain the geometrical information needed for quantitative elemental analysis. This paper will present measurements on synthetic samples to investigate the advantages of the technique, and also on natural solid and fluid inclusions in quartz. The influence of the geometrical parameters will be discussed with regard to the concentration determination by PIXE. In particular, accuracy of monazite micro-inclusion dating by coupled PIXE-RBS will be presented
    • 

    corecore